2. 大数定律及其在保险中的应用
我们在讨论概率的频率解释时,讲到过随机事件发生的频率具有稳定性,即随着实验次数的增加,随机事件发生的频率逐渐趋于某个常数,这种稳定性就是这里我们要讨论的大数定律的客观背景。
前面讲到危险事故的发生对于单个主体是随机的、不可测的,而对社会群体来说则是必然的、可估测的,这即是由大数定律决定的。大数定律是指随机事件在一次独立试验中发生的这种偶然性在大量的重复试验中将呈现为事件发生发展的某种必然的规律性。它说明了大量的随机现象由于偶然性相互抵消所呈现的必然数量规律,是保险经营的重要数理基础。
大数定律应用于保险时得出的最有意义的结论是:当保险标的的数量足够大时,通过以往统计数据计算出的估计损失概率与实际概率的误差将很小。保险经营利用大数定律把不确定的数量关系转化为确定的数量关系,即某一危险是否发生对某一个保险标的来说是不确定的,可能发生也可能不发生,但当保险标的数量很大时,我们可以很有把握地计算出其中遭受危险事故的保险标的会是多少。这样,根据大数定律,我们就把对单个保险标的来说不确定的数量关系转化为了对保险标的的集合来说确定的数量关系。
人身保险中,每个被保险人在一定时期是否发生危险事故是随机的、不确定的,并且各被保险人之间发生危险事故是相互独立。当面临同类危险的被保险人组成被保险集团时,相当于对随机事件进行多次重复观察。此时,被保险集团中发生危险事故的频率将随着被保险人数的增多而趋于稳定值,这个稳定值就是危险事故发生的概率。因而可以说单个被保险人遭受危险事故的不确定性将在被保险集团中消失,从而表现为,对于社会总体来说,危险事故的发生为确定的概率值,这一概率值也正是被保险人发生危险事故的可能性。因此可以说,虽然单个主体遭受危险事故是随机的、不可测的,但他遭受危险事故的可能性是可测的、确定的。